NUCLEOPHILIC ADDITION OF ALIPHATIC AMINO ACIDS TO N-2-METHYL-9-HYDROXY-ELLIPTICINIUM ACETATE UNDER PEROXIDASE-CATALYSED OXIDATIVE CONDITIONS : A REINVESTIGATION AND STRUCTURAL REVISION OF THE ADDUCTS

V.K. Kansal, R. Sundaramoorthi, B.C. Das* and P. POTIER*

lnstitut de Chimie des Substances Naturelles, CNRS, 91190 Gif-sur-Yvette France

Summary *: A reinvestigation of the adducts resulting from a peroxidase-catalysed reaction of N-2-methyl-9-hydroxyellipticinium acetate* 7 *with some aliphatic amino acids led to their - structural revision from 3 to 4. - -*

N-2-Methyl-9-hydroxyellipticinium (NMHE) acetate l_, a derivative of the indole alkaloid ellipticine, is known for its high cytotoxic activity' and is currently employed in the treatment of osteolytic metastases of breast cancer2. The quinone-imine system present in its oxidised form <u>2</u> is prone to regioselective Michael type addition reactions with **various nucleophiles providing different 10-substituted derivatives^{3,4}. The efficier synthesis of such adducts is of significance not only for understanding the in vivo mechanism of action of this drug, but also for an evaluation of the structure-activity relationships with a view to obtain more potent therapeutic agents. In this context, the synthesis of several aliphatic amino acid (glycine, alanine, valine, leucine) conjugates of NMHE acetate** *1* **under peroxidase-catalysed oxidative conditions (Horse Radish Peroxidase - -** H₂O₂) has recently been reported by Auclair et al.". However, it seemed to us that the **structures 3 assigned to these amino acid adducts AA-NMHE (Gly-NMHE, R = H** ; Ala-NMHE, R = Me ; Val-NMHE, R = CHMe₂ ; Leu-NMHE, R = CH₂CHMe₂) rest on dubious spectral interpretation. Thus, the occurrence of an absorption band at 1670cm⁻¹ in their **i.r. spectra was considered as evidence for the presence of a free carboxyl group, although these addition products were isolated as the acetate salts. Furthermore, the** highest mass peaks observed in their desorption chemical ionisation (using NH₂) mass **spectra were 46 mass units (m.u.) lower than the expected mass numbers of the cations corresponding to formulation 3 and this was explained as due to loss of carbon dioxide - (-44 m.u.) from the carboxyl group along with the oxidation (-2 m.u.** ; **loss of 2H) of the hydroxyindole function to the corresponding quinone-imine. But, whereas decarboxylation** $(-CO₂)$ in the mass spectrometer is not an unknown phenomenon, the oxidation $(-2H)$ of **the hydroxyindole to the quinone-imine under chemical ionisation conditions is, to our knowledge, without precedent.**

The need for reinvestigation and unambiguous structural determination of these amino acid adducts AA-NMHE therefore became mandatory. Herein we present arguments,

 $R = CH₂OH$
 $R = CHO$
 $R = H$ $\frac{6}{7}$

together with supporting experimental evidence, leading to structural revision 4 for such derivatives.

In order to address the problem, the Cly-NMHE and Ala-NMHE adducts were prepared as the acetate salts according to the published procedure⁵ and their identity established **from the 'H n.m.r. and mass spectral data. The possible interference of the acetate ions in the carbonyl absorption region of the i.r. spectra was subsequently eliminated by their** conversion^3 into the corresponding PF $_{\epsilon}^-$ salts. Instead of a band at 1670 cm^{-1} , we now noted in the i.r. spectra of both the \overline{PF}_{6}^{-} salts only a band of medium intensity at 1640 cm⁻¹ which could be readily attributed to the -C=N- absorption. The absence of a carbony band rendered the previously assigned structures <u>3</u> for Gly-NMHE (R = H) and Ala-NMH **(R = Me) adducts unacceptable. It became clear that decarboxylation took place during the nucleophilic addition of the amino acids to NMHE acetate 1 under the oxidation condition employed. Also, the recognition6 that these AA-NMHE conjugates resisted further oxidation excluded the oxidation-prone hydroxyindole structure as presented in 3. -**

In light of the above observations the previously reported⁵ mass spectral data m/z **302 and mlz 316 (also confirmed by Fast Atom Bombardment mass spectrometry in the present study) corresponding to the cation of Cly-NMHE and Ala-NMHE adducts,** ${\sf respectively}$, were reevaluated and found to be compatible with structure $\frac{\bf 1}{\bf 1}$ (K = H and **1 Me) containing a fused oxazole ring system. The published H n.m.r. data as well as our** newly obtained ¹³C n.m.r. data⁷ are also fully consistent with the revised formulation 4. As a consequence of this structural revision, the one-proton singlet at δ 8.34 in the 1 H **n.m.r. spectrum5 of Gly-NMHE (4** ; **R = H) should now be attributed to the oxazole ring proton.**

Further support is lent to the fused oxazole ring assignment 4 through a finding which resulted from a separate but related investigation involving an analogous nucleophilic addition to the hydroxycarbazole derivative 5⁸, albeit using a different oxidative system. **Thus, the reaction of 5 with ethanolamine (5 molar equiv.) in dichloromethane solution in the presence of a five-fold excess of active manganese dioxide provided, after** chromatographic separation and purification, three products $\underline{6}$, <u>7</u> and $\underline{8}$ in 19, 7 and 45 \dagger **yield, respectively. The structures of these compounds could be unambiguously assigned on the basis of their spectral analyses full details of which will be disclosed elsewhere. A p**lausible mechanism for the formation of $\underline{6}$, $\underline{7}$ and $\underline{8}$ through the intermediacy of \underline{A} – \underline{C} is depicted in Scheme 1. The known oxidative demethylation of N,N-dimethylaniline to N -methylaniline via N -formyl- N -methylaniline by using manganese dioxide as an oxidant led $\bf u$ s to consider the species $\bf \underline{B}$ as an intermediate in this mechanistic rationale

The aforementioned results suggested that a similar mechanism should also explain the formation of the AA-NMHE adducts 4 via oxidative decarboxylation of 2 followed by ring closure and dehydration (Scheme 2) under the peroxidase-catalysed reaction conditions.

Acknowledgement : we thank Roussel-Uclaf (V.K.K.) and the CNRS (R.S.) for postdoctoral research fellowships.

References

- **J .B. Le Pecq, C. Gosse, N. Dat-Xuong and C. Paoletti,** *C.* **R. Hebd. Seances Acad.** $\mathbf{1}$ **&i., 1975, 281, 1365 ; C. Paoletti, S. Cros, N. Dat-Xuong, P. Lecointe, and** A. Moisand, Chem. Biol. Int., 1984, 25, 45.
- $\overline{2}$ **P. Juret, A. Tanguy, J.Y. Le Talaer, J.S. Abatucci, N. Dat-Xuong, J.B. Le Pecq and C. Paoletti, Eur. J. Cancer, 1978, 14, 205 ; C. Paoletti, J.B. Le Pecq, N. Dat-Xuong, P. Juret, H. Garnier, H. Amiel and J. Rouesse, Recent Results Cancer Rz., 1980, 74, 107** ; **P. Juret, J.F. Heron, J.E. Couette, T. Delozier and J.Y. Le Talaer, Cancer Treat. Rep., 1982, 66, 1909** ; **A. Clasysse, A. Brugarolas, P. Siegenthaler, R. Abele, F. Cavalli, R. De Jager, G. Renard, M. Roseneweig and H.H. Hansen, Eur. J. Cancer Clin. Oncol., 1984, 20, 243.**
- **G. Meunier, B. Meunier, C. Auclair, J. Bernadou and C. Paoletti, Tetrahedron** 3 **E., 1983, 24, 365.**
- $\frac{1}{4}$ **V.K. Kansal, S. Funakoshi, P. Mangeney, P. Potier, B. Gillet, E. Guittet and J.-Y.** Lallemand, Tetrahedron Lett., 1984, 25, 2351 ; G. Pratviel, J. Bernadou and B. **Meunier, J. Chem. Sot., Chem. Commun., 1985, 60** ; **V.K. Kansal, P. Potier, G.** Gillet, E. Guittet, J.–Y. Lallemand, T. Huynh–Dinh and J. Igolen, <u>Tetrahedr</u> **s., 1985, 26, 2891.**
- **C. Auclair, E. Voisin, H. Banoun, C. Paoletti, J. Bernadou and B. Meunier, J. Med.** $\overline{5}$ **-.** , **1984, 2, 1161.**
- **B. Meunier, C. Auclair, J. Bernadou, G. Meunier, M. Maftouh, S. Cros, B.** 6 **Monsarrat and C. Paoletti in "Structure-Activity Relationships of Antitumor Agents", Eds. D.N. Reinhoudt, T.A. Connors, H.M. Pinedo and K.W. Van De Poll, Martinus and Nijhoff Publishers, The Hague/Boston/London, 1983, pp. 149-181.**
- $\overline{7}$ ¹³C nmr data (CD₃OH + D₂O + CD₃COOD, 50.3 MHz) : <u>4</u> (R = H), ₆ 150.9 (C-1 51.38 (<u>N</u> -Me), 135.6 (C-3), 116.39^o (C-4), 130.7 (C-4a), 115.03 (C-5), 15.59 **(C-5'),144.93 (C-5a). 138.96 (C-6a). 124.61 (C-7), 114.15' (C-8). 150.28 (C-9), 148.88 (C-lo), 117.36 (C-lOa), 136.\$' (C-lob), 125.09** (C-11), 20.89 **(C-11'). 138.7b** $(C-11a)$, 157.58 $(C-12)$; 4 $(R = Me)$, 6 150.98 $(C-1)$, 51.32 (N^2-Me) , 136.46 $(C-3)$, *116.0c (C-41, 131.51* **(C-4a),** *115.01 (C-5), 15.68* (C-5'). 145.7 **(C-5a), 141.08** (C-6a), 125.57 (C-7), 113.46 ^C (C-8), 151.64 (C-9), 149.9 (C-10), 117.32 (C-10a), 138.11^d (C-10b), 125.57 (C-11), 20.96 (C-11'), 139.43^d (C-11a), 169.46 (C-12), 18.98 (C-12') *;* a, b, c, d *:* these assignments may be interchanged.
- A. Ahond, C. Poupat and P. Potier, Tetrahedron, 1978, 34, 2385. 8
- 9 **H.B. Henbest and A. Thomas, J. Chem. Sot., 1957, 3032.**

(Received in France 16 July 1985)